Pertimbangkan sekali lagi kumpulan data: 6.4, 5.6, 7.8, 8.8, 11, 11.6, 16.7, 15.3, 21.6, 22.4. Sekarang kita akan cocok dengan model smoothing ganda dengan (alpha 0.3623) dan (gamma 1.0). Ini adalah perkiraan yang menghasilkan MSE serendah mungkin saat membandingkan seri orignal menjadi satu langkah di depan pada perkiraan waktu (karena versi pemulusan eksponensial ganda ini menggunakan nilai rangkaian saat ini untuk menghitung nilai merapikan, rangkaian yang diperhalus tidak dapat digunakan untuk Tentukan (alpha) dengan MSE minimum). Nilai awal yang dipilih adalah (S1 y1 6.4) dan (b1 ((y2 - y1) (y3 - y2) (y4 - y3)) 3 0,8). Untuk perbandingan, kita juga cocok dengan model pemulusan tunggal dengan (alpha 0.977) Ini menghasilkan MSE terendah untuk smoothing eksponensial tunggal). MSE untuk smoothing ganda adalah 3.7024. MSE untuk smoothing tunggal adalah 8.8867. Hasil peramalan untuk contoh Hasil smoothing untuk contohnya adalah: Plot membandingkan perkiraan smoothing eksponensial tunggal dan ganda Kumpulan hasil ini (dengan menggunakan nilai perataan ganda yang diramalkan) sangat mencerahkan. Grafik ini menunjukkan bahwa smoothing ganda mengikuti data lebih dekat daripada smoothing tunggal. Selanjutnya, untuk meramalkan perataan tunggal tidak dapat melakukan yang lebih baik daripada memproyeksikan garis horizontal lurus, yang tidak mungkin terjadi dalam kenyataan. Jadi dalam hal ini double smoothing lebih diutamakan. Plot membandingkan pemulusan eksponensial ganda dan prediksi regresi Akhirnya, mari kita bandingkan perataan ganda dengan regresi linier: Ini adalah gambar yang menarik. Kedua teknik tersebut mengikuti data dengan cara yang sama, namun garis regresi lebih konservatif. Artinya, ada peningkatan yang lebih lambat dengan garis regresi dibandingkan dengan perataan ganda. Pemilihan teknik tergantung pada peramal Pemilihan teknik tergantung pada peramal. Jika diinginkan untuk menggambarkan proses pertumbuhan dengan cara yang lebih agresif, maka seseorang memilih perataan ganda. Jika tidak, regresi mungkin lebih baik. Perlu dicatat bahwa pada waktu regresi linier berfungsi sebagai variabel bebas. Bab 4 membahas dasar-dasar regresi linier, dan rincian estimasi regresi. Model rata-rata dan pemulusan eksponensial Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasikan menggunakan Model moving-average atau smoothing. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat smoothing (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata - rata yang paling sederhana adalah. Simple Moving Average: Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t - (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk memperoleh kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia menggunakan banyak kuotimasi dalam Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang tampak lebih halus: Rata-rata pergerakan sederhana 5 langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai pengamatan terakhir, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata bergerak sederhana 9-istilah, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, rata-rata usia meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata pergerakan 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 - term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam prakiraan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan ramalan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam perkiraan pemulusan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, ketika 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang tampak wajar, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linear konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena pilihan penyesuaian musiman dinonaktifkan saat jenis model disetel ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi smoothing eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Bisa diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi paling baik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, perataan eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi naluriah kuotriotipnya. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Hal ini dimungkinkan untuk menghitung interval kepercayaan sekitar perkiraan jangka panjang yang dihasilkan oleh model pemulusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke atas halaman.) OR-Notes adalah serangkaian catatan pengantar tentang topik yang termasuk dalam judul penelitian bidang operasi (OR) yang luas. Mereka awalnya digunakan oleh saya dalam kursus perkenalan ATAU yang saya berikan di Imperial College. Mereka sekarang tersedia untuk digunakan oleh siswa dan guru yang tertarik atau tunduk pada kondisi berikut. Daftar lengkap topik yang tersedia di OR-Notes dapat ditemukan di sini. Contoh peramalan Peramalan contoh 1996 UG exam Permintaan produk dalam setiap lima bulan terakhir ditunjukkan di bawah ini. Gunakan rata-rata pergerakan dua bulan untuk menghasilkan perkiraan permintaan di bulan 6. Terapkan pemulusan eksponensial dengan konstanta pemulusan 0,9 untuk menghasilkan perkiraan permintaan permintaan di bulan 6. Manakah dari kedua perkiraan yang Anda inginkan dan mengapa perpindahan kedua bulan ini Rata-rata untuk bulan dua sampai lima diberikan oleh: Prakiraan untuk bulan ke enam hanyalah rata-rata pergerakan untuk bulan sebelumnya yaitu rata-rata bergerak untuk bulan 5 m 5 2350. Menerapkan pemulusan eksponensial dengan konstanta pemulusan sebesar 0,9, kita mendapatkan: Seperti sebelumnya Ramalan untuk bulan enam hanya rata-rata untuk bulan 5 M 5 2386 Untuk membandingkan dua prakiraan kita menghitung mean squared deviation (MSD). Jika kita melakukan ini, kita menemukan bahwa untuk rata-rata bergerak MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 dan untuk rata-rata merapikan secara eksponensial dengan konstanta smoothing 0,9 MSD (13 - 17) sup2 10.44 Secara keseluruhan, kita melihat bahwa pemulusan eksponensial tampaknya memberikan perkiraan satu bulan terbaik di depan karena memiliki MSD yang lebih rendah. Makanya kita lebih memilih ramalan 2386 yang telah diproduksi oleh smoothing eksponensial. Peramalan contoh ujian UG 1994 Tabel di bawah ini menunjukkan permintaan aftershave baru di toko untuk masing-masing 7 bulan terakhir. Hitung moving average dua bulan untuk bulan dua sampai tujuh. Berapa perkiraan Anda untuk permintaan di bulan delapan Terapkan pemulusan eksponensial dengan konstanta pemulusan 0,1 untuk menurunkan perkiraan permintaan di bulan ke delapan. Manakah dari dua prakiraan untuk bulan delapan yang Anda sukai dan mengapa penjaga toko percaya bahwa pelanggan beralih ke merek baru ini dari merek lain. Diskusikan bagaimana Anda bisa memodelkan perilaku switching ini dan menunjukkan data yang Anda perlukan untuk mengkonfirmasi apakah peralihan ini terjadi atau tidak. Rata-rata pergerakan dua bulan untuk bulan kedua sampai tujuh diberikan oleh: Perkiraan untuk bulan ke delapan hanya merupakan rata-rata pergerakan untuk bulan sebelumnya yaitu rata-rata bergerak untuk bulan 7 m 7 46. Menerapkan pemulusan eksponensial dengan konstanta pemulusan 0,1 Dapatkan: Seperti sebelum perkiraan untuk bulan ke delapan hanya rata-rata untuk bulan 7 M 7 31.11 31 (karena kita tidak dapat memiliki permintaan fraksional). Untuk membandingkan kedua prakiraan tersebut, kita menghitung mean squared deviation (MSD). Jika kita melakukan ini, kita menemukan bahwa untuk rata-rata bergerak dan rata-rata merapikan secara eksponensial dengan konstanta pemulusan 0,1 keseluruhan, maka kita melihat bahwa rata-rata pergerakan dua bulan tampaknya menghasilkan perkiraan satu bulan yang terbaik karena memiliki MSD lebih rendah. Makanya kita lebih memilih perkiraan 46 yang telah dihasilkan oleh moving average dua bulan. Untuk memeriksa peralihan kita perlu menggunakan model proses Markov, di mana negara merek dan kita memerlukan informasi keadaan awal dan probabilitas switching pelanggan (dari survei). Kita perlu menjalankan model pada data historis untuk melihat apakah kita memiliki kesesuaian antara model dan perilaku historis. Peramalan contoh ujian UG 1992 Tabel di bawah ini menunjukkan permintaan untuk merek pisau cukur tertentu di toko untuk masing-masing sembilan bulan terakhir. Hitung rata-rata pergerakan tiga bulan selama bulan tiga sampai sembilan. Berapa perkiraan perkiraan permintaan Anda pada bulan ke sepuluh Terapkan smoothing eksponensial dengan konstanta pemulusan 0,3 untuk mendapatkan perkiraan permintaan pada bulan ke sepuluh. Manakah dari dua perkiraan untuk sepuluh bulan yang Anda inginkan dan mengapa rata-rata moving average tiga bulan untuk bulan 3 sampai 9 diberikan oleh: Prakiraan untuk bulan ke 10 hanya merupakan rata-rata pergerakan untuk bulan sebelumnya yaitu rata-rata pergerakan untuk bulan 9 m 9 20.33. Oleh karena itu (karena kita tidak dapat memiliki permintaan fraksional) perkiraan untuk 10 bulan adalah 20. Menerapkan pemulusan eksponensial dengan konstanta pemulusan 0,3 kita dapatkan: Seperti sebelum perkiraan untuk bulan ke 10 hanya rata-rata untuk bulan 9 M 9 18.57 19 (seperti kita Tidak dapat memiliki permintaan fraksional). Untuk membandingkan kedua prakiraan tersebut, kita menghitung mean squared deviation (MSD). Jika kita melakukan ini, kita menemukan bahwa untuk rata-rata bergerak dan rata-rata merapikan secara eksponensial dengan konstanta pemulusan 0,3 Secara keseluruhan, kita melihat bahwa rata-rata pergerakan tiga bulan tampaknya menghasilkan perkiraan satu bulan yang terbaik karena memiliki MSD lebih rendah. Makanya kami lebih memilih perkiraan 20 yang telah dihasilkan oleh moving average tiga bulan. Peramalan contoh ujian UG 1991 Tabel di bawah ini menunjukkan permintaan untuk merek mesin faks tertentu di sebuah toserba dalam masing-masing dua belas bulan terakhir. Hitung moving average empat bulan untuk bulan 4 sampai 12. Berapa perkiraan perkiraan permintaan Anda di bulan 13 Terapkan pemulusan eksponensial dengan konstanta pemulusan 0,2 untuk mendapatkan perkiraan permintaan di bulan 13. Manakah dari dua perkiraan untuk bulan 13 apakah Anda lebih suka dan mengapa Faktor lain apa, yang tidak dipertimbangkan dalam perhitungan di atas, mungkin mempengaruhi permintaan untuk mesin faks di bulan 13 Rata-rata moving average empat bulan untuk bulan ke 4 sampai 12 diberikan oleh: m 4 (23 19 15 12) 4 17.25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Prakiraan untuk bulan ke 13 hanyalah rata-rata pergerakan untuk bulan sebelumnya yaitu rata-rata bergerak Untuk bulan 12 m 12 46,25. Oleh karena itu (karena kita tidak dapat memiliki permintaan fraksional) perkiraan untuk bulan ke 13 adalah 46. Menerapkan pemulusan eksponensial dengan konstanta pemulusan 0,2 kita dapatkan: Seperti sebelum perkiraan untuk bulan ke 13 hanya rata-rata untuk bulan 12 M 12 38.618 39 (seperti kita Tidak dapat memiliki permintaan fraksional). Untuk membandingkan kedua prakiraan tersebut, kita menghitung mean squared deviation (MSD). Jika kita melakukan ini, kita menemukan bahwa untuk rata-rata bergerak dan rata-rata merapikan secara eksponensial dengan konstanta pemulusan 0,2 Secara keseluruhan, kita melihat bahwa rata-rata pergerakan empat bulan tampaknya menghasilkan perkiraan satu bulan yang terbaik karena memiliki MSD lebih rendah. Makanya kita lebih memilih perkiraan 46 yang telah dihasilkan oleh rata-rata pergerakan empat bulan. Perubahan permintaan harga iklan musiman, kedua merek dan merek lain ini situasi ekonomi umum teknologi baru Peramalan contoh 1989 UG exam Tabel di bawah ini menunjukkan permintaan untuk merek microwave oven tertentu di sebuah department store dalam masing-masing dua belas bulan terakhir. Hitung moving average enam bulan untuk setiap bulannya. Berapa perkiraan Anda untuk permintaan di bulan 13 Terapkan pemulusan eksponensial dengan konstanta pemulusan 0,7 untuk mendapatkan perkiraan permintaan pada bulan 13. Manakah dari dua perkiraan untuk bulan 13 yang Anda inginkan dan mengapa Sekarang kita tidak dapat menghitung enam Bulan bergerak sampai kita memiliki setidaknya 6 pengamatan - yaitu kita hanya bisa menghitung rata-rata seperti itu dari bulan ke 6 dan seterusnya. Oleh karena itu kita memiliki: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32.00 m 8 (35 36 34 32 30 29) 6 32.67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38.17 Prakiraan untuk bulan 13 hanyalah rata-rata pergerakan untuk Bulan sebelumnya yaitu moving average untuk bulan 12 m 12 38.17. Oleh karena itu (karena kita tidak dapat memiliki permintaan fraksional) perkiraan untuk bulan ke 13 adalah 38. Menerapkan pemulusan eksponensial dengan konstanta pemulusan 0,7 yang kita dapatkan:
No comments:
Post a Comment